Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 374
Filtrar
1.
J Biol Chem ; 298(12): 102636, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36273582

RESUMO

In the vertebrate retina, phosphorylation of photoactivated visual pigments in rods and cones by G protein-coupled receptor kinases (GRKs) is essential for sustained visual function. Previous in vitro analysis demonstrated that GRK1 and GRK7 are phosphorylated by PKA, resulting in a reduced capacity to phosphorylate rhodopsin. In vivo observations revealed that GRK phosphorylation occurs in the dark and is cAMP dependent. In many vertebrates, including humans and zebrafish, GRK1 is expressed in both rods and cones while GRK7 is expressed only in cones. However, mice express only GRK1 in both rods and cones and lack GRK7. We recently generated a mutation in Grk1 that deletes the phosphorylation site, Ser21. This mutant demonstrated delayed dark adaptation in mouse rods but not in cones in vivo, suggesting GRK1 may serve a different role depending upon the photoreceptor cell type in which it is expressed. Here, zebrafish were selected to evaluate the role of cAMP-dependent GRK phosphorylation in cone photoreceptor recovery. Electroretinogram analyses of larvae treated with forskolin show that elevated intracellular cAMP significantly decreases recovery of the cone photoresponse, which is mediated by Grk7a rather than Grk1b. Using a cone-specific dominant negative PKA transgene, we show for the first time that PKA is required for Grk7a phosphorylation in vivo. Lastly, immunoblot analyses of rod grk1a-/- and cone grk1b-/- zebrafish and Nrl-/- mouse show that cone-expressed Grk1 does not undergo cAMP-dependent phosphorylation in vivo. These results provide a better understanding of the function of Grk phosphorylation relative to cone adaptation and recovery.


Assuntos
Quinases de Receptores Acoplados a Proteína G , Células Fotorreceptoras Retinianas Cones , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Receptor Quinase 1 Acoplada a Proteína G/genética , Receptor Quinase 1 Acoplada a Proteína G/metabolismo , Quinases de Receptores Acoplados a Proteína G/genética , Quinases de Receptores Acoplados a Proteína G/metabolismo , Fosforilação , Células Fotorreceptoras Retinianas Cones/metabolismo , Rodopsina/genética , Rodopsina/metabolismo , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
2.
Biochemistry (Mosc) ; 87(7): 658-666, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36154884

RESUMO

Renal cell carcinoma (RCC) is the most common urological malignancy with a high mortality and low detection rate. One of the approaches to improving its diagnostics may be the search for new non-invasive biomarkers in liquid biopsy and development of more sensitive methods for their detection. Cancer-retina antigens, which are known to be aberrantly expressed in malignant tumors, are present in liquid biopsy at extremely low concentrations. Using the developed multiplex immunoassay with a detection limit of 0.1 pg/ml, urine and serum samples of 89 patients with RCC and 50 non-cancer patients were examined for the presence of cancer-retina antigens (arrestin, recoverin, rhodopsin kinase, and transducin); the difference between the RCC and control groups was evaluated with the χ2 test. The results showed high diagnostic efficiency of a combination of arrestin and recoverin: at a threshold of 0.1 pg/ml, the sensitivity was 96%, specificity 92%, and AUC = 0.96 (95% confidence interval, 0.93-0.99). Seven days after nephrectomy, the concentration of the antigens returned to the level characteristic of the control group. Therefore, arrestin in a combination with recoverin can serve as a diagnostic non-invasive urinary biomarker of RCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Arrestinas , Biomarcadores Tumorais , Carcinoma de Células Renais/diagnóstico , Carcinoma de Células Renais/patologia , Receptor Quinase 1 Acoplada a Proteína G , Humanos , Neoplasias Renais/diagnóstico , Neoplasias Renais/patologia , Recoverina , Retina , Transducina
3.
Invest Ophthalmol Vis Sci ; 63(8): 18, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35861670

RESUMO

Purpose: Light detection in retinal rod photoreceptors is initiated by activation of the visual pigment rhodopsin. A critical, yet often-overlooked, step enabling efficient perception of light is rhodopsin dephosphorylation mediated by protein phosphatase 2A (PP2A). PP2A deficiency has been reported to impair rhodopsin regeneration after phosphorylation by G protein receptor kinase 1 (GRK1) and binding of arrestin (Arr1), thereby delaying rod dark adaptation. However, its effects on the viability of photoreceptors in the absence of GRK1 and Arr1 remain unclear. Here, we investigated the effects of PP2A deficiency in the absence of GRK1 or Arr1, both of which have been implicated in Oguchi disease, a form of night blindness. Methods: Rod-specific mice lacking the predominant catalytic Cα-subunit of PP2A were crossed with the Grk1-/- or Arr1-/- strains to obtain double knockout lines. Rod photoreceptor viability was analyzed in histological cross-sections of the retina stained with hematoxylin and eosin, and rod function was evaluated by ex vivo electroretinography. Results: PP2A deficiency alone did not impair photoreceptor viability up to 12 months of age. Retinal degeneration was more pronounced in rods lacking GRK1 compared to rods lacking Arr1, and degeneration was accelerated in both Grk1-/- or Arr1-/- strains where PP2A was also deleted. In Arr1-/- mice, rod maximal photoresponse amplitudes were reduced by 80% at 3 months, and this diminution was enhanced further with concomitant PP2A deficiency. Conclusions: These results suggest that although PP2A is not required for the survival of rods, its deletion accelerates the degeneration induced by the absence of either GRK1 or Arr1.


Assuntos
Arrestina , Degeneração Retiniana , Animais , Arrestina/metabolismo , Receptor Quinase 1 Acoplada a Proteína G/genética , Camundongos , Camundongos Knockout , Proteína Fosfatase 2 , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/fisiologia , Rodopsina/metabolismo
4.
BMC Ophthalmol ; 22(1): 99, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35246075

RESUMO

BACKGROUND: Oguchi disease is a rare autosomal recessive form of congenital quiescent night blindness. Oguchi disease has been found to be associated with gene mutations in SAG and GRK1, which are vital factors in the recovery phase of phototransduction after light stimuli. We report a case of Oguchi disease with novel heterozygous mutations in SAG. CASE PRESENTATION: A 7-year-old girl with a history of night blindness since childhood, was referred to our hospital. Ophthalmologic examinations included visual acuity, fundus examinations, fundus photography, spectral-domain optical coherence tomography, electroretinographic (ERG). Mutation screening of the SAG and GRK1 genes was performed. This patient exhibited typical clinical characteristics of Oguchi disease, including night blindness, golden fundus with the Mizuo-Nakamura phenomenon, packed structure of the parafovea in optical coherence tomography and reduced a-waves and b-waves in scotopic 3.0 ERG. Genetic testing revealed a heterozygous change in nucleotide c.72_75+15delATCGGTGAGTGGTGCACAA in exon 2 of the SAG gene in this patient, her unaffected mother and younger brother. A splicing alteration of nucleotide c.376-2A>C was identified in exon 6 of the SAG gene with heterozygous status in this patient and her unaffected father. CONCLUSIONS: Compound heterozygosity of a nonsense p.S25X mutation in exon 2 and a splicing alteration in exon 6 of the SAG gene is the cause of this patient with Oguchi type 1 disease in China.


Assuntos
Oftalmopatias Hereditárias , Cegueira Noturna , Arrestinas/genética , Criança , Eletrorretinografia , Oftalmopatias Hereditárias/diagnóstico , Oftalmopatias Hereditárias/genética , Feminino , Receptor Quinase 1 Acoplada a Proteína G/genética , Humanos , Mutação , Cegueira Noturna/diagnóstico , Cegueira Noturna/genética , Linhagem
5.
Eur J Ophthalmol ; 32(6): NP1-NP5, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34162253

RESUMO

BACKGROUND: Oguchi disease is a rare autosomal recessive retinal dystrophy, characterized by congenital stationary blindness and caused by pathogenic variants in SAG and GRK1 genes. The present study aimed to report an Italian patient affected by Oguchi disease, evaluated by means of a multimodal retinal imaging study and harboring two novel heterozygous pathogenic variants in the SAG gene. MATERIALS AND METHODS: A 60-year-old female complaining congenital stationary night blindness was investigated through fundus photograph, optical coherence tomography (OCT), electroretinography (ERG), and genetic testing. RESULTS: Fundus examination showed a golden-grayish fundus aspect. The rod response of the scotopic ERG was undetectable and mixed rod-cone response was electronegative. Fundus photographs obtained in light and in prolonged dark-adapted conditions allowed to detect the Mizuo-Nakamura phenomenon. Light condition OCT over the abnormal retinal regions showed high-intensity areas in the outer photoreceptor segment layer, that reduced with prolonged dark adaption. Genetic testing identified two rare heterozygous sequence variants in the SAG gene: NM_000541.5:c.807delA p.(Glu270Lysfs*9) and NM_000541.5:c.1047-1G>C confirming the diagnosis of Oguchi disease. CONCLUSIONS: We identified the first Italian compound heterozygous patient harboring two novel alterations in the SAG gene (a frameshift deletion and a splicing variant). The involvement of the SAG gene in Oguchi disease is a common finding in Japanese population, but rarely identified in Caucasians. Clinical suspicion should prompt the molecular analysis of genes associated with this condition.


Assuntos
Oftalmopatias Hereditárias , Cegueira Noturna , Eletrorretinografia , Oftalmopatias Hereditárias/diagnóstico , Oftalmopatias Hereditárias/genética , Feminino , Receptor Quinase 1 Acoplada a Proteína G/genética , Humanos , Pessoa de Meia-Idade , Mutação , Cegueira Noturna/diagnóstico , Cegueira Noturna/genética , Transtornos da Visão
6.
Int J Mol Sci ; 22(22)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34830487

RESUMO

Neuronal calcium sensor-1 (NCS-1) is a four-EF-hand ubiquitous signaling protein modulating neuronal function and survival, which participates in neurodegeneration and carcinogenesis. NCS-1 recognizes specific sites on cellular membranes and regulates numerous targets, including G-protein coupled receptors and their kinases (GRKs). Here, with the use of cellular models and various biophysical and computational techniques, we demonstrate that NCS-1 is a redox-sensitive protein, which responds to oxidizing conditions by the formation of disulfide dimer (dNCS-1), involving its single, highly conservative cysteine C38. The dimer content is unaffected by the elevation of intracellular calcium levels but increases to 10-30% at high free zinc concentrations (characteristic of oxidative stress), which is accompanied by accumulation of the protein in punctual clusters in the perinuclear area. The formation of dNCS-1 represents a specific Zn2+-promoted process, requiring proper folding of the protein and occurring at redox potential values approaching apoptotic levels. The dimer binds Ca2+ only in one EF-hand per monomer, thereby representing a unique state, with decreased α-helicity and thermal stability, increased surface hydrophobicity, and markedly improved inhibitory activity against GRK1 due to 20-fold higher affinity towards the enzyme. Furthermore, dNCS-1 can coordinate zinc and, according to molecular modeling, has an asymmetrical structure and increased conformational flexibility of the subunits, which may underlie their enhanced target-binding properties. In HEK293 cells, dNCS-1 can be reduced by the thioredoxin system, otherwise accumulating as protein aggregates, which are degraded by the proteasome. Interestingly, NCS-1 silencing diminishes the susceptibility of Y79 cancer cells to oxidative stress-induced apoptosis, suggesting that NCS-1 may mediate redox-regulated pathways governing cell death/survival in response to oxidative conditions.


Assuntos
Sinalização do Cálcio/genética , Receptor Quinase 1 Acoplada a Proteína G/genética , Neoplasias/genética , Proteínas Sensoras de Cálcio Neuronal/genética , Neurônios/metabolismo , Neuropeptídeos/genética , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Linhagem Celular Tumoral , Dimerização , Dissulfetos/química , Motivos EF Hand/genética , Células HEK293 , Humanos , Cinética , Neoplasias/patologia , Proteínas Sensoras de Cálcio Neuronal/antagonistas & inibidores , Neurônios/química , Neuropeptídeos/antagonistas & inibidores , Oxirredução , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/genética , Zinco/metabolismo
7.
EMBO J ; 40(21): e107839, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34528284

RESUMO

Adaptive evolution to cellular stress is a process implicated in a wide range of biological and clinical phenomena. Two major routes of adaptation have been identified: non-genetic changes, which allow expression of different phenotypes in novel environments, and genetic variation achieved by selection of fitter phenotypes. While these processes are broadly accepted, their temporal and epistatic features in the context of cellular evolution and emerging drug resistance are contentious. In this manuscript, we generated hypomorphic alleles of the essential nuclear pore complex (NPC) gene NUP58. By dissecting early and long-term mechanisms of adaptation in independent clones, we observed that early physiological adaptation correlated with transcriptome rewiring and upregulation of genes known to interact with the NPC; long-term adaptation and fitness recovery instead occurred via focal amplification of NUP58 and restoration of mutant protein expression. These data support the concept that early phenotypic plasticity allows later acquisition of genetic adaptations to a specific impairment. We propose this approach as a genetic model to mimic targeted drug therapy in human cells and to dissect mechanisms of adaptation.


Assuntos
Adaptação Fisiológica/genética , Alelos , Receptor Quinase 1 Acoplada a Proteína G/genética , Aptidão Genética , N-Glicosil Hidrolases/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Receptor Quinase 1 Acoplada a Proteína G/metabolismo , Edição de Genes , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HCT116 , Células HEK293 , Haploidia , Humanos , Carioferinas/genética , Carioferinas/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Mutação , Células Mieloides/metabolismo , Células Mieloides/patologia , N-Glicosil Hidrolases/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Transdução de Sinais , Transcriptoma
8.
Elife ; 102021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34550876

RESUMO

Eukaryotes generally display a circadian rhythm as an adaption to the reoccurring day/night cycle. This is particularly true for visual physiology that is directly affected by changing light conditions. Here we investigate the influence of the circadian rhythm on the expression and function of visual transduction cascade regulators in diurnal zebrafish and nocturnal mice. We focused on regulators of shut-off kinetics such as Recoverins, Arrestins, Opsin kinases, and Regulator of G-protein signaling that have direct effects on temporal vision. Transcript as well as protein levels of most analyzed genes show a robust circadian rhythm-dependent regulation, which correlates with changes in photoresponse kinetics. Electroretinography demonstrates that photoresponse recovery in zebrafish is delayed in the evening and accelerated in the morning. Functional rhythmicity persists in continuous darkness, and it is reversed by an inverted light cycle and disrupted by constant light. This is in line with our finding that orthologous gene transcripts from diurnal zebrafish and nocturnal mice are often expressed in an anti-phasic daily rhythm.


Assuntos
Ritmo Circadiano/efeitos da radiação , Células Fotorreceptoras de Vertebrados/efeitos da radiação , Células Fotorreceptoras Retinianas Cones/efeitos da radiação , Animais , Arrestinas/genética , Arrestinas/metabolismo , Escuridão , Eletrorretinografia , Feminino , Receptor Quinase 1 Acoplada a Proteína G/genética , Receptor Quinase 1 Acoplada a Proteína G/metabolismo , Luz , Transdução de Sinal Luminoso , Masculino , Camundongos , Modelos Animais , Células Fotorreceptoras de Vertebrados/metabolismo , Proteínas RGS/genética , Proteínas RGS/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Visão Ocular/efeitos da radiação , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
9.
Nature ; 595(7868): 600-605, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34262173

RESUMO

G-protein-coupled receptor (GPCR) kinases (GRKs) selectively phosphorylate activated GPCRs, thereby priming them for desensitization1. Although it is unclear how GRKs recognize these receptors2-4, a conserved region at the GRK N terminus is essential for this process5-8. Here we report a series of cryo-electron microscopy single-particle reconstructions of light-activated rhodopsin (Rho*) bound to rhodopsin kinase (GRK1), wherein the N terminus of GRK1 forms a helix that docks into the open cytoplasmic cleft of Rho*. The helix also packs against the GRK1 kinase domain and stabilizes it in an active configuration. The complex is further stabilized by electrostatic interactions between basic residues that are conserved in most GPCRs and acidic residues that are conserved in GRKs. We did not observe any density for the regulator of G-protein signalling homology domain of GRK1 or the C terminus of rhodopsin. Crosslinking with mass spectrometry analysis confirmed these results and revealed dynamic behaviour in receptor-bound GRK1 that would allow the phosphorylation of multiple sites in the receptor tail. We have identified GRK1 residues whose mutation augments kinase activity and crosslinking with Rho*, as well as residues that are involved in activation by acidic phospholipids. From these data, we present a general model for how a small family of protein kinases can recognize and be activated by hundreds of different GPCRs.


Assuntos
Receptor Quinase 1 Acoplada a Proteína G/química , Rodopsina/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Bovinos , Microscopia Crioeletrônica , Estrutura Terciária de Proteína , Transdução de Sinais
10.
Front Endocrinol (Lausanne) ; 12: 652628, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054727

RESUMO

The glucagon-like peptide-1 receptor (GLP-1R) is a G-protein-coupled receptor (GPCR) whose activation results in suppression of food intake and improvement of glucose metabolism. Several receptor interacting proteins regulate the signaling of GLP-1R such as G protein-coupled receptor kinases (GRK) and ß-arrestins. Here we evaluated the physiological and pharmacological impact of GRK inhibition on GLP-1R activity leveraging small molecule inhibitors of GRK2 and GRK3. We demonstrated that inhibition of GRK: i) inhibited GLP-1-mediated ß-arrestin recruitment, ii) enhanced GLP-1-induced insulin secretion in isolated islets and iii) has additive effect with dipeptidyl peptidase 4 in mediating suppression of glucose excursion in mice. These findings highlight the importance of GRK to modulate GLP-1R function in vitro and in vivo. GRK inhibition is a potential therapeutic approach to enhance endogenous and pharmacologically stimulated GLP-1R signaling.


Assuntos
Receptor Quinase 1 Acoplada a Proteína G/antagonistas & inibidores , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Amidas/química , Animais , Células CHO , Cálcio/metabolismo , Cricetulus , Diabetes Mellitus/metabolismo , Dipeptidil Peptidase 4/metabolismo , Ingestão de Alimentos , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Glucose/metabolismo , Humanos , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Camundongos , Obesidade/metabolismo , Fosforilação , Receptores de Glucagon/metabolismo , Insuficiência Renal Crônica/metabolismo , Transdução de Sinais , beta-Arrestinas/metabolismo
11.
Open Biol ; 11(1): 200346, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33401992

RESUMO

The prototypical Ca2+-sensor protein recoverin (Rec) is thought to regulate the activity of rhodopsin kinase (GRK1) in photoreceptors by switching from a relaxed (R) disc membrane-bound conformation in the dark to a more compact, cytosol-diffusing tense (T) conformation upon cell illumination. However, the apparent affinity for Ca2+ of its physiologically relevant form (myristoylated recoverin) is almost two orders of magnitude too low to support this mechanism in vivo. In this work, we compared the individual and synergistic roles of the myristic moiety, the GRK1 target and the disc membrane in modulating the calcium sensitivity of Rec. We show that the sole presence of the target or the disc membrane alone are not sufficient to achieve a physiological response to changes in intracellular [Ca2+]. Instead, the simultaneous presence of GRK1 and membrane allows the T to R transition to occur in a physiological range of [Ca2+] with high cooperativity via a conformational selection mechanism that drives the structural transitions of Rec in the presence of multiple ligands. Our conclusions may apply to other sensory transduction systems involving protein complexes and biological membranes.


Assuntos
Cálcio/metabolismo , Recoverina/metabolismo , Animais , Apoproteínas/química , Apoproteínas/metabolismo , Dicroísmo Circular , Ácido Egtázico/análogos & derivados , Ácido Egtázico/química , Transferência Ressonante de Energia de Fluorescência , Receptor Quinase 1 Acoplada a Proteína G/química , Receptor Quinase 1 Acoplada a Proteína G/metabolismo , Íons/química , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Recoverina/química , Recoverina/genética
12.
Nat Neurosci ; 24(1): 19-23, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33318667

RESUMO

Microglial surveillance is a key feature of brain physiology and disease. Here, we found that Gi-dependent microglial dynamics prevent neuronal network hyperexcitability. By generating MgPTX mice to genetically inhibit Gi in microglia, we show that sustained reduction of microglia brain surveillance and directed process motility induced spontaneous seizures and increased hypersynchrony after physiologically evoked neuronal activity in awake adult mice. Thus, Gi-dependent microglia dynamics may prevent hyperexcitability in neurological diseases.


Assuntos
Receptor Quinase 1 Acoplada a Proteína G/fisiologia , Microglia/fisiologia , Rede Nervosa/fisiologia , Animais , Sinalização do Cálcio , Movimento Celular , Convulsivantes , Eletroencefalografia , Vigilância Imunológica , Camundongos , Microglia/enzimologia , Microglia/ultraestrutura , Doenças do Sistema Nervoso/fisiopatologia , Fenômenos Fisiológicos do Sistema Nervoso , Pilocarpina , Convulsões/fisiopatologia , Transdução de Sinais , Proteínas rho de Ligação ao GTP/metabolismo
13.
Hum Mutat ; 42(2): 164-176, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33252155

RESUMO

Biallelic mutations in G-Protein coupled receptor kinase 1 (GRK1) cause Oguchi disease, a rare subtype of congenital stationary night blindness (CSNB). The purpose of this study was to identify disease causing GRK1 variants and use in-depth bioinformatic analyses to evaluate how their impact on protein structure could lead to pathogenicity. Patients' genomic DNA was sequenced by whole genome, whole exome or focused exome sequencing. Disease associated variants, published and novel, were compared to nondisease associated missense variants. The impact of GRK1 missense variants at the protein level were then predicted using a series of computational tools. We identified twelve previously unpublished cases with biallelic disease associated GRK1 variants, including eight novel variants, and reviewed all GRK1 disease associated variants. Further structure-based scoring revealed a hotspot for missense variants in the kinase domain. In addition, to aid future clinical interpretation, we identified the bioinformatics tools best able to differentiate disease associated from nondisease associated variants. We identified GRK1 variants in Oguchi disease patients and investigated how disease-causing variants may impede protein function in-silico.


Assuntos
Oftalmopatias Hereditárias , Receptor Quinase 1 Acoplada a Proteína G , Cegueira Noturna , Oftalmopatias Hereditárias/genética , Receptor Quinase 1 Acoplada a Proteína G/genética , Humanos , Cegueira Noturna/genética
14.
Curr Opin Chem Biol ; 56: 98-110, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32446179

RESUMO

G protein-coupled receptors (GPCRs), the largest family of signaling membrane proteins, are the target of more than 30% of the drugs on the market. Recently, it has become clear that GPCR functions are far more multidimensional than previously thought, with multiple noncanonical aspects coming to light, including biased, oligomeric, and compartmentalized signaling. These additional layers of functional selectivity greatly expand opportunities for advanced therapeutic interventions, but the development of new chemical biology tools is absolutely required to improve our understanding of noncanonical GPCR regulation and pave the way for future drugs. In this opinion, we highlight the most notable examples of chemical and chemogenetic tools addressing new paradigms in GPCR signaling, discuss their promises and limitations, and explore future directions.


Assuntos
Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Animais , Cálcio/metabolismo , Desenho de Fármacos , Endossomos/metabolismo , Receptor Quinase 1 Acoplada a Proteína G/metabolismo , Regulação da Expressão Gênica , Humanos , Ligantes , Terapia de Alvo Molecular , Oxidantes Fotoquímicos , Ligação Proteica , Proteômica , Transdução de Sinais , Relação Estrutura-Atividade , beta-Arrestinas/metabolismo
15.
Doc Ophthalmol ; 141(2): 181-185, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32146548

RESUMO

PURPOSE: The available literature regarding Oguchi disease is limited, with around 50 cases described to date. Caused by mutations to either the SAG gene coding for arrestin (Hayashi et al. in Ophthalmic Res 46:175-180, 2011) or the GRK1 gene coding for rhodopsin kinase (Yamamoto et al. in Nat Genet 15:175-178. https://doi.org/10.1038/ng0297-175 , 1997), Oguchi disease is an autosomal recessive condition with a good visual prognosis. The clinical diagnosis of the condition is based on the presence of night blindness (nyctalopia), as well as fundoscopic observation of the Mizuo-Nakamura phenomenon. The Mizuo-Nakamura phenomenon refers to a fundus discolouration described as a golden-brown colour with a yellow-grey metallic sheen most prominent in the peripheral retina; after prolonged dark adaptation, the fundus appears normal. The prevalence of Oguchi disease is highest in Japan, particularly with SAG mutations (Nakazawa et al. in Retina 17:17-22, 1997), although patients from Europe, Pakistan and India have also been described. Formal diagnosis requires genetic testing. METHODS: Wide-field fundus images were obtained in both dark-adapted and light-adapted retina. Optical coherence tomography and dark-adapted electroretinography responses were used to further characterize the clinical phenotype. RESULTS: Existing descriptions of Oguchi disease have been limited by available technology. The flashes required for 45°-montage photographs in a dark-adapted eye quickly cause light adaptation. Recent advances in technology enable the capture of larger retinal areas in a single image. Wide-field 133° images were obtained of the native and dark-adapted fundus in natural colour. To our knowledge, these represent the first reported single-wide-field images of Oguchi disease, showing the characteristic Mizuo-Nakamura phenomenon in true colour. Genetic testing revealed a novel homozygous mutation in GRK1. CONCLUSIONS: Here, we demonstrate how characterizing this condition with single-shot true-colour wide-field imaging has distinct advantages over scanning laser technology, which applies artificial colouration, or stitched true-colour images. Images captured with wide-field systems create a much better representation of the native and dark-adapted fundus than can be observed by the ophthalmologist using direct fundoscopy and are essential in the clinical characterization of new mutations.


Assuntos
Oftalmopatias Hereditárias/genética , Oftalmopatias Hereditárias/fisiopatologia , Receptor Quinase 1 Acoplada a Proteína G/genética , Mutação , Cegueira Noturna/genética , Cegueira Noturna/fisiopatologia , Retina/fisiopatologia , Adaptação à Escuridão , Eletrorretinografia , Oftalmopatias Hereditárias/diagnóstico por imagem , Humanos , Masculino , Pessoa de Meia-Idade , Cegueira Noturna/diagnóstico por imagem , Oftalmoscopia , Estimulação Luminosa , Retina/diagnóstico por imagem , Tomografia de Coerência Óptica
16.
FASEB J ; 34(2): 2677-2690, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31908030

RESUMO

Timely recovery of the light response in photoreceptors requires efficient inactivation of photoactivated rhodopsin. This process is initiated by phosphorylation of its carboxyl terminus by G protein-coupled receptor kinase 1 (GRK1). Previously, we showed that GRK1 is phosphorylated in the dark at Ser21 in a cAMP-dependent manner and dephosphorylated in the light. Results in vitro indicate that dephosphorylation of Ser21 increases GRK1 activity, leading to increased phosphorylation of rhodopsin. This creates the possibility of light-dependent regulation of GRK1 activity and its efficiency in inactivating the visual pigment. To address the functional role of GRK1 phosphorylation in rods and cones in vivo, we generated mutant mice in which Ser21 is substituted with alanine (GRK1-S21A), preventing dark-dependent phosphorylation of GRK1. GRK1-S21A mice had normal retinal morphology, without evidence of degeneration. The function of dark-adapted GRK1-S21A rods and cones was also unaffected, as demonstrated by the normal amplitude and kinetics of their responses obtained by ex vivo and in vivo ERG recordings. In contrast, rod dark adaptation following exposure to bright bleaching light was significantly delayed in GRK1-S21A mice, suggesting that the higher activity of this kinase results in enhanced rhodopsin phosphorylation and therefore delays its regeneration. In contrast, dark adaptation of cones was unaffected by the S21A mutation. Taken together, these data suggest that rhodopsin phosphorylation/dephosphorylation modulates the recovery of rhodopsin to the ground state and rod dark adaptation. They also reveal a novel role for cAMP-dependent phosphorylation of GRK1 in regulating the dark adaptation of rod but not cone photoreceptors.


Assuntos
Adaptação à Escuridão/fisiologia , Receptor Quinase 1 Acoplada a Proteína G/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Serina/metabolismo , Animais , Receptor Quinase 1 Acoplada a Proteína G/genética , Cinética , Camundongos Transgênicos , Fosforilação , Retina/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Rodopsina/metabolismo
17.
Structure ; 27(12): 1862-1874.e7, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31669042

RESUMO

"Universal" synthetic antibody (sAB)-based fiducial marks have been generated by customized phage display selections to facilitate the rapid structure determination of G protein-coupled receptor (GPCR) signaling complexes by single-particle cryo-electron microscopy (SP cryo-EM). sABs were generated to the two major G protein subclasses: trimeric Gi and Gs, as well as mini-Gs, and were tested to ensure binding in the context of their cognate GPCRs. Epitope binning revealed that multiple distinct epitopes exist for each G(αßγ) protein. Several Gßγ-specific sABs, cross-reactive between trimeric Gi and Gs, were identified suggesting they could be used across all subclasses in a "plug and play" fashion. sABs were also generated to a representative of another class of GPCR signaling partner, G protein receptor kinase 1 (GRK1) and evaluated further, supporting the generalizability of the approach. EM data suggested that the subclass-specific sABs provide effective single and dual fiducials for multiple GPCR signaling complexes.


Assuntos
Anticorpos/química , Receptor Quinase 1 Acoplada a Proteína G/química , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Subunidades alfa Gs de Proteínas de Ligação ao GTP/química , Biblioteca de Peptídeos , Sequência de Aminoácidos , Anticorpos/genética , Anticorpos/metabolismo , Especificidade de Anticorpos , Sítios de Ligação , Clonagem Molecular , Microscopia Crioeletrônica , Escherichia coli/genética , Escherichia coli/metabolismo , Receptor Quinase 1 Acoplada a Proteína G/genética , Receptor Quinase 1 Acoplada a Proteína G/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Cinética , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinâmica
18.
Biochemistry ; 58(43): 4374-4385, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31621304

RESUMO

G protein-coupled receptor kinase 1 (GRK1) or rhodopsin kinase is under specific control of the neuronal Ca2+-sensor protein recoverin, which is a critical feedback mechanism responsible for the modulation of the shape and sensitivity of the rod cell photoresponse. This process requires the precise matching of interacting protein surfaces and the dynamic changes in protein conformations. Here we study the molecular recognition process of recoverin and GRK1 by testing the hypothesis of a cation-π interaction pair in the recoverin-GRK1 complex. The critical role of residue K192 in recoverin was investigated by site-directed mutagenesis and subsequent structural and functional analysis. The following methods were used: isothermal titration calorimetry, fluorescence and circular dichroism spectroscopy, Ca2+-dependent membrane binding, and protein-protein interaction analysis by back scattering interferometry and surface plasmon resonance. While neutralizing the charge at K in the mutant K192L did not prevent binding of recoverin to GRK1, reversing the charge from K to E led to more distortions in the interaction process, but both mutations increased the stability of the protein conformation. Molecular dynamics simulations provided an explanation for these findings as they let us suggest that residue 192 per se is not a major stabilizer of the interaction between recoverin and its target but rather that the native K is involved in a network of switching electrostatic interactions in wild-type recoverin.


Assuntos
Receptor Quinase 1 Acoplada a Proteína G/metabolismo , Recoverina/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Cálcio/metabolismo , Bovinos , Escherichia coli/genética , Receptor Quinase 1 Acoplada a Proteína G/química , Receptor Quinase 1 Acoplada a Proteína G/genética , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutação Puntual , Ligação Proteica , Conformação Proteica , Recoverina/química , Recoverina/genética , Eletricidade Estática
19.
Int J Mol Sci ; 20(20)2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31658639

RESUMO

Recoverin (Rec) is a prototypical calcium sensor protein primarily expressed in the vertebrate retina. The binding of two Ca2+ ions to the functional EF-hand motifs induces the extrusion of a myristoyl group that increases the affinity of Rec for the membrane and leads to the formation of a complex with rhodopsin kinase (GRK1). Here, unbiased all-atom molecular dynamics simulations were performed to monitor the spontaneous insertion of the myristoyl group into a model multicomponent biological membrane for both isolated Rec and for its complex with a peptide from the GRK1 target. It was found that the functional membrane anchoring of the myristoyl group is triggered by persistent electrostatic protein-membrane interactions. In particular, salt bridges between Arg43, Arg46 and polar heads of phosphatidylserine lipids are necessary to enhance the myristoyl hydrophobic packing in the Rec-GRK1 assembly. The long-distance communication between Ca2+-binding EF-hands and residues at the interface with GRK1 is significantly influenced by the presence of the membrane, which leads to dramatic changes in the connectivity of amino acids mediating the highest number of persistent interactions (hubs). In conclusion, specific membrane composition and allosteric interactions are both necessary for the correct assembly and dynamics of functional Rec-GRK1 complex.


Assuntos
Receptor Quinase 1 Acoplada a Proteína G/química , Receptor Quinase 1 Acoplada a Proteína G/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Recoverina/química , Recoverina/metabolismo , Sítio Alostérico , Proteínas de Ligação ao Cálcio , Biologia Computacional , Proteínas do Olho/química , Interações Hidrofóbicas e Hidrofílicas , Transdução de Sinal Luminoso , Modelos Moleculares , Simulação de Dinâmica Molecular , Ácidos Mirísticos , Proteínas do Tecido Nervoso/química , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Análise de Sequência de Proteína
20.
Molecules ; 24(13)2019 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-31288444

RESUMO

Recently, we have found that calcium binding proteins of the EF-hand superfamily (i.e., a large family of proteins containing helix-loop-helix calcium binding motif or EF-hand) contain two types of conserved clusters called cluster I ('black' cluster) and cluster II ('grey' cluster), which provide a supporting scaffold for the Ca2+ binding loops and contribute to the hydrophobic core of the EF-hand domains. Cluster I is more conservative and mostly incorporates aromatic amino acids, whereas cluster II includes a mix of aromatic, hydrophobic, and polar amino acids of different sizes. Recoverin is EF-hand Ca2+-binding protein containing two 'black' clusters comprised of F35, F83, Y86 (N-terminal domain) and F106, E169, F172 (C-terminal domain) as well as two 'gray' clusters comprised of F70, Q46, F49 (N-terminal domain) and W156, K119, V122 (C-terminal domain). To understand a role of these residues in structure and function of human recoverin, we sequentially substituted them for alanine and studied the resulting mutants by a set of biophysical methods. Under metal-free conditions, the 'black' clusters mutants (except for F35A and E169A) were characterized by an increase in the α-helical content, whereas the 'gray' cluster mutants (except for K119A) exhibited the opposite behavior. By contrast, in Ca2+-loaded mutants the α-helical content was always elevated. In the absence of calcium, the substitutions only slightly affected multimerization of recoverin regardless of their localization (except for K119A). Meanwhile, in the presence of calcium mutations in N-terminal domain of the protein significantly suppressed this process, indicating that surface properties of Ca2+-bound recoverin are highly affected by N-terminal cluster residues. The substitutions in C-terminal clusters generally reduced thermal stability of recoverin with F172A ('black' cluster) as well as W156A and K119A ('gray' cluster) being the most efficacious in this respect. In contrast, the mutations in the N-terminal clusters caused less pronounced differently directed changes in thermal stability of the protein. The substitutions of F172, W156, and K119 in C-terminal domain of recoverin together with substitution of Q46 in its N-terminal domain provoked significant but diverse changes in free energy associated with Ca2+ binding to the protein: the mutant K119A demonstrated significantly improved calcium binding, whereas F172A and W156A showed decrease in the calcium affinity and Q46A exhibited no ion coordination in one of the Ca2+-binding sites. The most of the N-terminal clusters mutations suppressed membrane binding of recoverin and its inhibitory activity towards rhodopsin kinase (GRK1). Surprisingly, the mutant W156A aberrantly activated rhodopsin phosphorylation regardless of the presence of calcium. Taken together, these data confirm the scaffolding function of several cluster-forming residues and point to their critical role in supporting physiological activity of recoverin.


Assuntos
Recoverina/química , Recoverina/metabolismo , Alanina/química , Motivos de Aminoácidos , Substituição de Aminoácidos , Cálcio/metabolismo , Receptor Quinase 1 Acoplada a Proteína G/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Cinética , Modelos Moleculares , Mutação , Fosforilação , Ligação Proteica , Recoverina/genética , Rodopsina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...